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Abstract

A recently developed numerical method based on a volume integral formulation is applied to calculate the elasto-
static field in an unbounded isotropic elastic medium containing orthotropic inclusions subject to remote loading. A
modified form of the method in which the integral equations involve volumes of the inclusions and boundaries of voids
or cracks is used to deal with the presence of both types of inhomogeneity. A detailed analysis of displacement and
stress fields is carried out for orthotropic cylindrical and elliptic cylindrical inclusions as well as voids. The accuracy and
effectiveness of the new methods are examined through comparison with results obtained from analytical and boundary
integral equation methods. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The calculation of the stress and strain fields in solids containing multiple inclusions and voids or cracks
and subjected to external loads is of considerable interest in a variety of engineering applications. A notable
example is the stress analysis of damaged fiber reinforced composites that consist of a large number of
densely packed fibers with voids or cracks in the matrix. The matrix and the fibers in composites are usually
made of isotropic material. However, some of the constituents can be anisotropic. As an example, in SiC/Ti
metal matrix composites, the matrix is nearly isotropic, but the SiC fibers have strong anisotropy. Struc-
tural composites are often subject to manufacturing and/or service induced defects that strongly affect the
remaining life of the structure. A precise knowledge of the deformation and stress fields near interacting
isotropic or anisotropic fibers and voids/microcracks under remote loading can be extremely helpful
in predicting the failure and damage mechanisms in the composites. Several techniques have been pro-
posed for analyzing multiple-inclusion interactions in an infinite medium (Mal and Yang, 1994; Chen, 1993;
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Duan et al., 1986; Johnson et al., 1980; Moschovidis and Mura, 1975; McPedran and Movchan, 1994;
Kushch, 1998). However, none of these methods can be applied to the general problem in which the in-
clusions or voids are of arbitrary shape and their concentration is high. To our knowledge, the only
available methods to solve problems of this type are the finite element (FEM) or the boundary integral
equation (BIEM) method. However, the FEM is most effective when the domain of the problem is finite
and it is often not possible to separate the influence of the boundary from that of the “microscopic”
features of the material on the elastic field. Conventional FEMs cannot be directly applied to infinite
domains. The BIEM is, in principle, applicable to this class of problems since it can be applied to infinite
domains. However, since Green’s function for anisotropic inclusions is involved in the BIEM and Green’s
function for an anisotropic material is much more complex than that for isotropic materials, their nu-
merical treatment of the BIEs becomes extremely cumbersome (Lee and Mal, 1990).

In this paper, a volume integral equation method (VIEM) and a mixed volume and boundary integral
equation method are developed for the effective and accurate calculation of the stresses and displacements in
unbounded isotropic solids in the presence of multiple anisotropic inclusions and voids or cracks. It should
be noted that these newly developed numerical methods do not require Green’s function for anisotropic
inclusions, and they can also be applied to general two-dimensional elastostatic as well as elastodynamic
problems for arbitrary geometry and a number of inhomogeneities. In the formulation of the methods, the
continuity condition at each interface is automatically satisfied, and in contrast to FEM, where the full
domain needs to be discretized, these methods require discretization of the inclusions only. Finally, the
methods take full advantage of the pre- and post-processing capabilities developed in FEM and BIEM.

In this paper, a detailed analysis of the displacement and stress fields are carried out for an unbounded
isotropic matrix containing orthotropic cylindrical and elliptic cylindrical inclusions and voids. The ac-
curacy and effectiveness of the new methods are examined through comparison with results obtained from
analytical and boundary integral equation methods. It is demonstrated that these new methods are very
accurate and effective for solving plane elastostatic problems in unbounded solids containing anisotropic
inclusions and voids.

2. The integral equations
2.1. The volume integral equation method

The geometry of the general elastostatic problem is shown in Fig. 1. Let C, jk, denote the elastic stiffness
tensor of the inclusion and ¢! , ; those of the unbounded matrix material. The matrix is assumed to be
homogeneous and isotropic so that C,,k)z is a constant isotropic tensor, while C,,kz is arbitrary, i.e., the in-
clusions may, in general, be inhomogeneous and anisotropic. The interfaces between the inclusions and the
matrix are assumed to be perfectly bonded insuring the continuity of the displacement and stress vectors.

The elastostatic VIE is given by (Mal and Knopoff, 1967; Lee and Mal, 1997)

U (X) = 14, (X) — / Scigly (& X)urs (§)dE, (1)
R

where the integral is over whole space, dc; = cfj/.llzl - cffk),, and g"(&,x) is the static Green’s function (or
Kelvin’s solution) for the unbounded matrix material, i.e., g"(&,x) represents the ith component of the
displacement at & due to unit concentrated force at x in the mth direction. In Eq. (1), the summation
convention and comma notation have been used and the differentiations are with respect to &,. It should be

noted that the integrand is nonzero within the inclusions only, since dc;; = 0, outside the inclusions.
If x € R, then Eq. (1) is an integrodifferential equation for the unknown displacement vector u(x), it can,
in principle, be determined through the solution of Eq. (1). An algorithm based on the discretization of
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Fig. 1. Geometry of the general elastostatic problem.

Eq. (1) was developed by Lee and Mal (1995, 1997) to determine the unknown displacement vector u(x)
by discretizing the inclusions using standard finite elements. Once u(x) within the inclusions is determined,
the displacement field outside the inclusions can be obtained from Eq. (1) by evaluating the integral, and the
stress field within and outside the inclusions can also be determined without any difficulty. The details of the
numerical treatment of Eq. (1) can be found in Lee and Mal (1995, 1997) and will be omitted. In what
follows the formulation for plane strain, elastostatic displacement and stress fields is developed for an
unbounded isotropic matrix containing orthotropic inclusions as well as voids.

Let the coordinate axes xj, x;, x3 be taken parallel to the symmetry axes of the orthotropic material.
Under plane strain assumption in the 1-2 plane, the constitutive relation for the orthotropic inclusions can
be expressed in the form,

[ cn cn O €]
(00) = | Cl2 Cx» 0 € . (2)
T12 0 0 ce6 Y12

The stiffness constants c;; are related to the engineering moduli through

o — Ei(1 —va3v3) s — E>(viz 4+ vaavi3) _ Ey(va1 + va3va1)
n= 12 y Y ) )
Ey(1 —v3vi3) -
Cp=——""7""", Co6 = Hgo»
A
where
A =1—vp3v3 — Vi3v31 — Viavar — 2v21 V3 Vy3. (4)

In the above equation, E, E,, E, are Young’s moduli in 1, 2 and 3 directions, respectively, ug is the shear
modulus in the 1-2 plane and v;; is Poisson’s ratio for transverse strain in the j-direction when stressed in the
i-direction. Thus, for uniaxial stress along x;,

6.

€

It should be noted that the elastic moduli satisfy the reciprocal relationships v;;/E; = v;;/E;.
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For plane strain problems, the volume integral equation (1) becomes
ur(x) = uy(x) — /{[50115?1”1,1 + Seing) yuan + 8cesg] 5 (12 + uz)] + (86283 y2 2 + ciag) yun
R

+ 8cgy 1 (12 + uz )]} dE,, (6)

Uy (X) = uy(X) — /{[SCllgilul‘l + 50125’%,1“2,2 + SCeégiz(ul,z +uzy)] + [5022852%2,2 + Bclzgﬁ,zul‘l
R

+ 6066g§‘1 (12 + uz)]}dEd, (7)

where u(X), uy(x) are the in-plane displacement components and dci; = ¢y — (A+2p), Ocpp =
cia — A, 8¢ = cp — (A+2u), dces = ce6 — i, and A, u are the Lamé constants for the isotropic matrix
material.

In Eqgs. (6) and (7), g/ is Green’s function for the unbounded isotropic matrix material. Thus, the VIEM
does not require the use of Green’s function for the anisotropic inclusions. This is in contrast to the BIEM,
where Green’s functions for both the matrix and the inclusions are involved in the formulation of the
equations. For uniformly applied remote stress, the displacement vector u° is of the form,

u(l) = Clxa ug = CZya ug = C3x + C4y7 (8)

where the constants C,—Cy are related to the tensile and shear components of the applied stress.
2.2. The boundary integral equation method

The integral equation on the outer surface S, of the anisotropic inclusion can be expressed as (Banerjee,
1993; Rizzo et al., 1985)

zww:@@Hw%/[£W@mma—ﬁM@mwﬁww& 9)
Sy
while for the interior surface S_,
S E X (&) — g" V(e &) |n;ds 10
U (X) Cijki s gkl ( X)ui(&) — g (& X)ur (&) | n;dS. (10)
In Egs. (9) and (10), n is the outward unit normal to S, and superscripts (M) and (I) indicate that the
quantities involved are for the isotropic matrix and the inclusions, respectively. Egs. (9) and (10), together

with the continuity conditions across S, give rise to the BIE for u(x). When the inclusion becomes a void,
the integral equations reduce to the standard BIE,

() = 1300 + i) [ (@ x)uEnas. (11)
The integral equations on the outer surface of the orthotropic inclusion can be expressed as
n (x /[g (&) + €@ 0n(E) - 1™ (E X (0
(& X)u }dS

(12)
s (x) = u3(x /'g awn>+&><>u@—ﬁwaww@

M (e, ]dS
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where g#™ is Green’s function for the unbounded isotropic matrix material and is given by (Banerjee, 1993;
Rizzo et al., 1985)

A+ p A+ 3u
AM) — Inrd,g +r,rgl, 13
g, IO+ | Ita pHrary (13)
where r =[x — ¢| and o, = 1,2 and A, u are the Lamé constants for the unbounded isotropic matrix

material, and the associated tractions, Tﬁ )(o, p = 1,2) and ¢, are given by

(’“+2ﬂ)g11 ”1+/ng2 ”1+H( +g21 )”27
(”+2/‘)g11 n1+Ag22 ”l‘HJ(g +g21 )”27 14
(’L“‘Z#)gzz ”2+/Lgll ”2+M(g +g21M))n17 ()
(A+2ﬂ)g22 ”2+/“g11 n2+u( +g21 )nh
and
t = (A4 2p)uyiny + Juzony + p(uy s + upy )no, (15)
ty = (A + 2W)uzony + Auy iy + p(ur2 + uz g )y
For the interior surface, the equations are
i (x) = / [l & x0n(8) + " (& %00(8) = 1V (& X () - RV (E X)us(&)] ds (@),
) (16)

w0 = [ [0 + 2" 0n(E) - 7X@ - 1 (E X)) (@),

It should be noted that gf® and T/V (a, B = 1,2) in Eq. (16) are the Green’s function and their associated
tractions for the orthotropic inclusions.

The plane strain Green’s function for the orthotropic material is given by (Davi and Milazzo, 1996;
Banerjee, 1993; Doblare et al., 1990; Snyder and Cruse, 1975; Tomlin and Butterfield, 1974)

g}(l)(éax) = —2[4\Bii1Inr| + A12Bpz Inry),

(U(f, X) =-2i {A“Bz] tan~! (%) + A12B2» tan~! (%)} ,

(D(ﬁ,x) = -2i {A21Butan71 (%) + AnBiytan! (%)} = gf(l)v
ggm(é’ X) = —2[A21B21 lnr1 +A22322 11’17”2],

where A4;; and B;; (i,j = 1,2) are complex constants:

[An Alz] [ bud + b by + b ] (18)

Ay Ax bty +bn/iy bipy + b/,
—Ayn i A1 L
B B — | mAn—mdn 4n mAn—ppdy  4n (19)
By By A L AL
A=A, 4n Ay —App  4n

The constants b;; are the “reduced compliances”, related to the moduli through
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I —v3vi3 Va1 + V31V23 Vi2 + VaVi3
by =——F—, by =— = - )
E, E, E;
1 — v 1 (20)
by =—22 b =—, bg=0, by=0.
E, Hee
The other symbols in Egs. (17)-(19) are given by
x=x1— ¢,
=[x — &)y 1= hlx — &), (21)
\/x +y1a ry = \/x2+y27
=1i(ag+ b i,
= iap + bo) = L (22)
to = i(=ao + bo) = i
where
5 1/2 5 1/2
4 by + % — /bi1by b — biy + ¢+ /b11bx (23)
0= 2b1; R 2by; '
Since b1y + (bes/2) — V/buibn > 0, iy, i, are real and y,, u, are purely imaginary.
The tractions, 7PV (a, f = 1,2) and ¢,, are
Ay Biix  ApBpx . Ay Biifyx  AnBij,x
T11(1>_chlnl{ 11211 T 12012 }_21012’11{ 21 121,111 + 22 122,“2 }
i ’”% n )
Ay Bt ApBiji | A4xB A»B
— 2eeem 1o ) 4 12 122,112)/2] 1[ 21 211}71 4 2 212}/2} }7
) i r
. AnB ApB A» By [l A» Bl
lea) _ _216”’11{ 11 21y1 12 222)’2} _ 2612111{ 21 221/11)/1 4 22 22#2)’2}
r3 n r
A Byx A Byx A AuBaifiyx  ApBrnjix
_2066712{ 21 21 22 222 }-ﬁ-l[ 11 221#1 + 12 222#2 ]}7
r3 r r3
(24)
B x  A»nBpibx AnByx  ApBixx
T1(1> _ —21022712{ 21 11#1 LAz 122!12 } B 2021712{ 11 211 LA 212 }
3 r 3
1311H1y1 AlzBlzﬂz)’z A AnBuyr | AnBuoy
— 2cesm 5 —1 5 + 5 )
) Ty s
A> B A»B . A B Ap»B
T22<>: _2022’12{ 1By + 22 2;#2}’2 } +21021n2{ 115211 n 12 222)’2}
3 ’”% 3
A1 Byix  Ax»nByox | AuBajyx  ApBaiihmx
_2066n1{|: 21 221 LA 222 }Hl 11 221M1 LA 2 1},
n ) n ’”%
t = cruyny + crpupang + ceelUy 2 + Uz g )no,
1 11U1,11] 12Uz 21 66 (1412 2.1)12 (25)

bty = Cpli oMy + Ciatty 1My + Co(U1 2 + Uz )Ny
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As the observation point approaches the interface, u;(x) in Egs. (12) and (16) are replaced by (1/2)u;(x)
for a smooth interface, and the derivatives of Green’s function must be interpreted in the Cauchy principal
value sense. Applying the continuity conditions at the interface, followed by discretization, a system of four
coupled algebraic equations for the interface displacements and tractions are obtained, which can be solved
to give the displacements and stress components at the nodal points of the interface. Once the displace-
ments and tractions at the interface are known, the displacements and stresses everywhere can be calculated
by evaluating the integral expressions in Egs. (12) and (16).

2.3. Numerical formulation

The integral equations (6), (7), (12) and (16) must be solved numerically through discretization of their
respective domains and evaluation of the integrals. Clearly, the integrands contain singularities of different
orders due to the singular nature of the Green’s function at x = £ (i.e., » = 0), and the evaluation of the
integrals requires special attention. The order of the singularity for the isotropic matrix is Inr in the Green’s
function and 1/r in its derivatives while that for the orthotropic material is Inr, in the Green’s function and
1/r, in its derivatives where r, is given in Eq. (21). It should be noted that the VIE involves only g#™ and
TF™ for the isotropic matrix while the BIE involves g/ and 7" for the anisotropic inclusions in addition
to these. Furthermore, the singularities in VIEM are weaker (integrable) than those in BIEM, where they
are of the Cauchy type. We have used the direct integration scheme as introduced by Cerrolaza and Alarcon
(1989), Li and Han (1985) and Lu and Ye (1991), after suitable modifications, to handle the singularities; a
description of the modified method used in the discretization of the VIE is given by Lee and Mal (1997).

3. Inclusion problems

In order to check the accuracy of the integral equation methods, we first consider a single orthotropic,
elliptic cylindrical inclusion in the unbounded isotropic matrix under uniform remote tensile loading,
02 = 0,, as shown in Fig. 2. The major and minor axes of the inclusion are denoted by @ and b, respectively.
Three different aspect ratios (b/a = 1.0, 0.75 and 0.50), for the inclusion are considered, and the value of a
is assumed to be 70 um. The elastic constants for the isotropic matrix and the orthotropic inclusion are
listed in Table 1 (Davi and Milazzo, 1996). Two different elastic constants for the orthotropic inclusion are
considered: in model #1, ¢; in the inclusion is greater than that in the matrix, and in model #2, ¢, in the
inclusion is smaller than that in the matrix.

Ay
Orthotropic
. Inclusion o
«— —>
° (€1 Cip Cop Ceg) Fb °
H
. AT o .
H I()I-’__ B X
I
< >
Isotropic (A, u)

< >
<+ >

Fig. 2. Geometry of an orthotropic inclusion in unbounded isotropic matrix under uniform remote tensile loading.
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Table 1
Material properties of the isotropic matrix and the orthotropic inclusion
Elastic constants (GPa) Isotropic matrix Orthotropic inclusion
#1 #2
A 67.34 - -
u 37.88 - -
e 143.1 279.08 13.95
2 67.34 7.8 0.39
» 143.1 30.56 1.53
Ce6 37.88 11.8 0.59

Figs. 3 and 4 show typical discretized models used in the VIEM and BIEM, respectively. The standard
eight-node quadrilateral and six-node triangular elements were used in the VIEM while standard quadratic
elements were used in the BIEM. The total number of elements used in VIEM was 144 and in BIEM, it was
80. The number of elements, 144 and 80, was determined based on a convergence test. All computations
have been performed on the IBM RS/6000 at UCLA. Table 2 shows the comparison between the analytical
solution (Hwu and Yen, 1993; Yang and Chou, 1976) and the numerical solutions using VIEM and BIEM
for the normalized tensile stress component (o,/0®) within the orthotropic inclusion under uniform remote
tensile loading (0?). It should be noted that as expected, the stress components inside the inclusion are
constant and that there is excellent agreement between the three sets of results for all cases considered.

In order to check the efficiency of the computations, the CPU times required to calculate the stresses in
an isotropic matrix with an orthotropic inclusion (#1, b/a = 1) using VIEM and BIEM are compared. The
measured CPU time in BIEM was 27 s and in VIEM it was 139 s. This is to be expected since BIEM
requires discretization of the boundaries only while VIEM requires discretization of the inclusions. This
advantage deteriorates as the number of inclusions increases or if the inclusions become inhomogeneous.
The number of elements used in the VIEM was determined based on the convergence test. No formal error
estimation was carried out; however, the results obtained from analytical method and VIEM were com-
pared in Table 2 to test the accuracy of the VIEM calculations.

Fig. 3. A typical discretized model in the VIEM.
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b

-

Fig. 4. A typical discretized model in the BIEM.

Table 2
Normalized tensile stress component (a,/¢?) within the inclusion due to uniform remote tensile loading (a?)
Isotropic matrix with orthotropic inclusion (#1) Isotropic matrix with orthotropic inclusion (#2)
bla=1 b/a=0.75 b/a=0.50 bla=1
Exact 1.2388 1.3051 1.4206 0.298
VIEM 1.2389 1.3054 1.4213 0.2979
BIEM 1.2397 1.3049 1.4245 0.2986

4. The mixed volume and boundary integral equations

In this section, a mixed volume and boundary integral equation method is introduced as an effective
numerical scheme for the solution of plane elastostatic problems in unbounded isotropic matrix containing
anisotropic inclusions and voids. The VIEM is effective for problems with anisotropic inclusions due to the
fact that only Green’s function for the unbounded isotropic matrix is needed in the formulation. However,
the method cannot be directly applied to problems involving voids and cracks since the field quantities are
undefined in the domain of the integral equation. Problems involving voids can be most effectively solved
by BIEM. However, if the material contains a combination of voids and inclusions, it is most advantageous
to apply a combination of the two methods. The mixed volume and boundary integral equation for the
problem shown in Fig. 5 can be expressed in the form (Lee, 1994)

tin(X) = (%) — / Scuagl™ (&, X)us,(8)dE + / MMy S (), (26)
V S

where V is the volume of the inclusion, S is the surface of the void and n is the outward unit normal to S.
The superscript (M) implies that the quantities involved are for the matrix.

We consider a single orthotropic cylindrical inclusion (orthotropic #1) and a single cylindrical void, each
of radius a, in an unbounded isotropic matrix under uniform remote tensile loading as shown in Fig. 5. The
distance between the orthotropic inclusion and the void was chosen as 3a. Fig. 6 shows a typical discretized
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Ay

Orthotropic

Inclusion #1 L,

(cn, Ciz, Cz, Css) Void

g, O,
-~ T —
B =180, Ao=0° > .
"N .
-« <P —
2a i a e 2a >
- —
Isotropic (A, p)

Fig. 5. Geometry of an orthotropic cylindrical inclusion and a cylindrical void in an unbounded isotropic matrix under uniform remote
tensile loading.

Orthotropic
Inclusion

Void

VIEM BIEM

Fig. 6. Discretized model of the problem shown in Fig. 5 in the mixed volume and boundary integral equation method.

model for the problem used in the mixed volume and boundary integral equation method. The number of
standard eight-node quadrilateral and six-node triangular elements inside the orthotropic inclusion was 144
while the number of standard quadratic elements on the surface of the void was 80. Assuming that m and n
are the number of nodes in V and on S, respectively, the following system of algebraic equations for plane
strain problems in the 1-2 plane can be constructed:

{”1}(m) —{u} (m)
) impemim Flionsmominy | ) fday | _ ) —{uite (27)
[G][(m+ )X (m-n)] [H][(m+n)><(m+n)] {’42}(m) _{”g}(m) ’

{ur} ) —{u3}

where
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[E] _ [ [[W] - [[H(mxm) [VB] (mxn) :|
(omtmx(men)] = | BY] BB] = 311) sy |
[F] _ [ [W} (mxm) U/B](”’X”) :|
[(m+-n)x (m-4n)] L [B V] (nxm) [BB](”X”) 7
7] [VB]
G _ (mxm) (mxn) ,
[ ][(m+n)><(m+")] L [B V] (nxm) [BB] (nxn)
[H] _ [ [[W] - [[]](mxm) [VB](I'”X”) :| ,
[(m4n)x (m-+n)] L [BV](nxm) HBB] - E[IH (nxn)

where the symbols [VV], [VB], [BV] and [BB] indicate the field inside the inclusion, the interaction field
between the inclusion and the surface of the void, the interaction field between the surface of the void and
the inclusion, and the field on the surface of the void, respectively. For the problem sketched in Fig. 6, m =
433 and n = 160.

The nodal displacement components (1, u;) inside the inclusion and on the surface of the void can be
obtained from Eq. (27); the displacements and stresses everywhere can then be calculated without difficulty.
It should be noted that it is necessary to use the direct numerical integration scheme in this mixed integral
equation formulation.

In order to validate the code based on the mixed volume and boundary integral equation method, the
numerical solution of the same problem was also obtained by means of the VIEM only, following the
procedure outlined by Lee and Mal (1995, 1997) to represent the void by means of an inclusion with
vanishing moduli. Fig. 7 shows a typical discretized model used; the total number of the standard eight-
node quadrilateral and six-node triangular elements inside the orthotropic inclusion and inside the “void”
was 384. Fig. 8 shows the comparison between the mixed volume and BIEM solution and the VIEM so-
lution for the normalized tensile stress component (o,/¢?) at the interface between the isotropic matrix and
the orthotropic inclusion under uniform remote tensile loading (¢?). It can be seen that there is excellent
agreement between the two sets of results.

Orthotropic
Inclusion

VIEM
Fig. 7. Discretized model of the problem shown in Fig. 5 in the VIEM.
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Orthotropic
— Inclusion #1

(11, Ciz, Cz2, Cas) Void

g, O,
-~ —
o-1ef No-o°
i ; 0 X
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2a a 2a
—] —>
Isotropic (A, p)
1.5
—O— VIEM

1 —4— MIXED VIEM-BIEM

0.3 +

Normalized Tensile Stress Component

W 4+—771
0 30 60 90 120 150 180

0 (deg.)

Fig. 8. Normalized tensile stress component (o, /6?) at the interface between the isotropic matrix and the orthotropic inclusion under
uniform remote tensile loading (¢?).

5. Concluding remarks

The VIEM is applied to the solution of plane elastostatic problems in unbounded isotropic matrix
containing orthotropic inclusions under uniform remote loading. A mixed volume and boundary integral
equation method is introduced for the solution of elastostatic problems in unbounded isotropic materials
containing anisotropic inclusions as well as voids or cracks. The main advantage of these techniques over
those based on finite elements is that they require discretization of the inclusions and void (or crack)
surfaces only in contrast to the need to discretize the entire domain. They are similar to the BIEM except
for the presence of the volume integral over the inclusions instead of the surface integrals over the two sides
of the interface. If the medium contains a small number of (isotropic) inclusions and voids, these methods
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may not have any advantage over BIEM. However, in the presence of multiple non-smooth inclusions, the
numerical treatment in BIEM becomes cumbersome. Since the standard finite elements are used in the
VIEM, it is very easy and convenient to handle multiple non-smooth inclusions. In elastodynamic problems
in the presence of multiple anisotropic inclusions, the BIEM becomes extremely difficult since closed form
expressions for the elastodynamic Green’s functions for 2D and 3D for anisotropic media are not available.
Two major drawbacks of the methods, at least for the present, are the lack of professionally developed,
user-friendly software, and their inability to handle problems involving large deformations.
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